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Computing Aggregates

⦁ General philosophy
⦁ Counts     x      Severity   =   Loss Pick

 
⦁ Freq. Dist ^     Sev. Dist  =   Aggregate Dist
⦁ ^ = Compound Distribution
⦁ Need to select frequency and severity 

distributions
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Computing Aggregates

⦁ Fourier Transform Based Methods
⦁ Continuous Fourier Transform

⦁ Heckman-Meyers
⦁ Discrete Fourier Transform

⦁ Fast Fourier Transform

⦁ Method of Moments
⦁ Panjer-Wilmot Recursive Method
⦁ Simulation
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Computing Aggregates

⦁ Method of Moments
⦁ Mean and variance

⦁ Lognormal, gamma, other two parameter distributions
⦁ Mean, variance, skewness

⦁ 3 parameter or shifted lognormal
⦁ 3 parameter or shifted gamma

⦁ Bowers, Gerber, Hickman, Jones, Nesbitt, ...
⦁ Generalized gamma 

⦁ Mean, variance, skewness, kurtosis
⦁ Generalized beta

⦁ Very flexible, but hard to fit
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Computing Aggregates

⦁ Method of Moments
⦁ Moments of severity distributions and frequency 

distributions are available in literature
⦁ Moments of layers of severity distributions is an exercise in 

integration
⦁ Use integration by parts and recursive function calls, rather than 

deriving a closed form expression
⦁ For skewness of aggregate see Bowers et al.
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Aggregate Distributions and AAD’s

⦁ AAD has non-linear payoff: max(X-k,0)
⦁ By Jensen’s inequality 

  E(max(X-k,0)) > max(E(X)-k,0)
⦁ Explains why full credit not given for AAD

⦁ Many other examples of Jensen’s < in actuarial science
⦁ Annuity certain for expected future life vs. a(x)

⦁ Remembering Jensen
⦁ Since variance is positive, E(X2) > E(X) 2

⦁ Aggregate distributions also help actuary figure 
discount factor
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Example: Loss Pick

⦁ Counts x Severity = Loss Pick
⦁ Counts

⦁ Look at trended counts greater than $550K
⦁ 5% trend, can’t look at smaller claims

⦁ Triangle and development shown on next slide
⦁ Indicate roughly 75 claims xs $550K per year
⦁ Trended experience has 261 claims xs $550K, 47 of 

which are strictly greater than $1M
⦁ Counts to layer approx. 47 / 261 x 75 = 13.5
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Example: Loss Pick

Volume Weighted Averages
1-2 2-3 3-4 4-5 5-6

All 2.939 1.425 1.202 1.226 1.038

Last 3 2.957 1.429 1.202 1.226 1.038

All (Ex Last) 3.000 1.372 1.204 1.279

Last 3 (Ex Last) 3.111 1.372 1.204 1.279

SELECTED 3.000 1.420 1.200 1.250 1.050

LDF 7.716 2.572 1.811 1.509 1.208
Pattern 13.0% 38.9% 55.2% 66.3% 82.8%
Interp. Patt 13.0% 38.9% 55.2% 66.3% 82.8%

Frequency per
Latest Pattern Ultimate l Premium 100M

81 87.0% 93.15 1,000 9.32
74 82.8% 89.36 1,000 8.94
31 66.3% 46.79 1,000 4.68
42 55.2% 76.07 1,000 7.61
24 38.9% 61.73 1,000 6.17
9 13.0% 69.44 1,000 6.94

Average Frequency: From  To
1992 1997 7.28
1992 1996 7.34

Development Period  
Treaty Period 1 2 3 4 5 6

1992 13 36 51 61 78 81
1993 13 40 52 63 74
1994 7 18 26 31
1995 7 26 42
1996 9 24
1997 9

Individual Factors

Development Period  
Treaty Period 1-2 2-3 3-4 4-5 5-6 6-7

1992 2.77 1.42 1.20 1.28 1.04
1993 3.08 1.30 1.21 1.17
1994 2.57 1.44 1.19
1995 3.71 1.62
1996 2.67
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Example: Loss Pick

⦁ Counts x Severity = 
Loss Pick

⦁ Severity
⦁ Select $653,000 from 

“pivot table” of trended 
limited severities

⦁ P/O 2 curve gives severity 
of $632,000 

⦁ Choose not to develop 
individual claims

⦁ ALAE added as flat 
20%

AY Data Total Average
92 Sum of Layer Loss 6,924,909     629,537          

Sum of Count 11                 
93 Sum of Layer Loss 13,893,858   731,256          

Sum of Count 19                 
94 Sum of Layer Loss 2,708,356     541,671          

Sum of Count 5                   
95 Sum of Layer Loss 3,252,011     464,573          

Sum of Count 7                   
96 Sum of Layer Loss 2,891,521     722,880          

Sum of Count 4                   
97 Sum of Layer Loss 1,000,000     1,000,000       

Sum of Count 1                   
Total Sum of Layer Loss 30,670,654   652,567          
Total Sum of Count 47                 
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Example: Loss Pick

⦁ Loss Pick = 13.5 x 653K x 1.2 = $10.6M
⦁ To compute aggregate need to select frequency 

and severity distributions
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Example: Frequency Distribution

⦁ Many choices for frequency distribution
⦁ Poisson good for rare events
⦁ Over-dispersion (variance > mean) often makes 

Poisson a poor choice
⦁ Negative Binomial more realistic, models 

 variance = constant x mean
⦁ Used by Heckman-Meyers (contagion parameter)
⦁ constant  = Variance Multiplier

⦁ In example, use Negative Binomial with 
variance = 10 x mean (c=0.67)
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Example: Severity Distribution

⦁ Use empirical distribution 
⦁ Losses trended respecting policy limits
⦁ Easier than trying to fit severity curves 
⦁ See paper to be presented at DFA seminar on resampling 

and bootstrapping
⦁ Most numerical methods use discrete severity 

distributions and do not require fitted distribution
⦁ Assume severity given by trended empirical 

distribution, respecting limits (47 data points)
⦁ Can also use smoothed distribution
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Fitting Severity Curves 

⦁ Beware discontinuities at round numbers
⦁ Beware trending through limits

⦁ Would generate numerous claims just over $1M which 
lowers estimated severity and distorts aggregate 
distribution

⦁ See graphs on next slide
⦁ Left hand graph trends through policy limits
⦁ Right hand graph trends respecting policy limits

⦁ Only difference is empirical distribution
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Fitting Severity Curves

Fits vs Empirical
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Example: Aggregate from Moments

⦁ Assume Negative Binomial frequency and 
trended empirical severity

⦁ Moments
⦁ Frequency = 13.5 CV = 0.86 skew = 1.64
⦁ Severity = $784K CV = 0.53 skew = -0.32
⦁ Aggregate = $10.6M CV = 0.87 skew = 1.64

⦁ Shifted Lognormal fit
⦁ t   =  -7.76M (decreases skewness)
⦁ mu   = 16.6
⦁ sigma = 0.48
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Example: Aggregate from Moments

⦁ Loss picks
⦁ $5M AAD = $6.5M
⦁ $7.5M AAD = $4.9M
⦁ $10M AAD = $3.7M

⦁ See slide 24 for comparison with FFT method
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DFT Basics

⦁ Do not have time for thorough review
⦁ Recommend the following books:

⦁ The Fast Fourier Transform and its Applications, by E. 
Oran Brigham (especially good)

⦁ Numerical Recipes in C  by Press, Flannery, Teukolsky, 
and Vetterling

⦁ Fast Transforms: Algorithms, Analyses, Applications by 
Elliott and Rao
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DFT Basics

⦁ DFT converts an n-point discrete sample of a 
distribution into an n-point sample of the 
continuous Fourier transform

⦁ FFT is a quick method of computing DFT’s
⦁ See Rao for nice description of method in-terms of 

factoring matrices
⦁ Sample regarded as starting at $0
⦁ n a power of 2 for maximum efficiency, 

generally between 1,024 and 65,536 in 
applications
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DFT Basics

⦁ Computing DFT’s
⦁ Excel has FFT add-in 

⦁ Tools, Data Analysis, Fourier Analysis
⦁ Slow, hard to work with complex numbers

⦁ SAS IML
⦁ Very fast, but no built in support for complex numbers
⦁ Can be used in practical application
⦁ DDE to Excel

⦁ MATLAB
⦁ Very fast, built in complex numbers, easy to use
⦁ DDE / Active X to Excel

⦁ Other software...
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DFT Basics

⦁ DFT computed as a linear combination of 
powers of roots of unity
⦁ Input gives coefficients

⦁ First element of DFT is sum of elements of input
⦁ If input is discrete severity distribution this equals 1

⦁ Middle element is real for real input vector
⦁ All other terms are complex numbers
⦁ Second half of DFT is complex conjugate of first 

half
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DFT Basics

⦁ Fourier transform methods based moment 
generating function identity

where
⦁ N = frequency random variable
⦁ X = severity random variable
⦁ S  = aggregate random sum

⦁ For most frequency distributions MN(t) is 
actually a function of et

⦁ Do not need to compute logs
⦁ Very important, since that is hard---why?

M t M M tX N X( ) (log( ( ))=
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Simple DFT Example

⦁ If severity distribution is $1 with certainty then 
aggregate distribution = frequency distribution

⦁ Gives method to compute counting distributions
⦁ From definition DFT(0,1,0,...,0) = nth roots of 

unity
⦁ Vertices of regular n-gon in complex plane

⦁ Next slide outlines Excel calculation for Poisson 
distribution with expected value of 5
⦁ Excel IMMULT, IMEXP etc. 

⦁ Uses 32 buckets



Simple DFT Example

N Sev FFT(Sample) exp(5(FFT-1)) IFFT Actual Error
0 0 1 1 0.006738   0.006738  -1.2E-13
1 1 0.98078528040323-0.195090322016128i 0.509423855191203-0.752112180031036i 0.033690   0.033690  -4.9E-15
2 0 0.923879532511287-0.38268343236509i -0.229609511356744-0.643725758779707i 0.084224   0.084224  -8.2E-16
3 0 0.831469612302545-0.555570233019602i -0.402396127528844-0.153184348985286i 0.140374   0.140374  -3.2E-15
4 0 0.707106781186547-0.707106781186548i -0.21349217157604+8.87422067842442E-002i 0.175467   0.175467  -1.6E-15
5 0 0.555570233019602-0.831469612302545i -5.71117635819395E-002+9.21064531448694E-002i 0.175467   0.175467  -1.6E-15
6 0 0.382683432365089-0.923879532511287i -4.2396539375581E-003+4.54604402340852E-002i 0.146223   0.146223  -2.8E-15
7 0 0.195090322016128-0.98078528040323i 3.4021680408073E-003+1.75446722567033E-002i 0.104445   0.104445  -1.3E-16
8 0 -1i 1.91130077129597E-003+6.4611809388167E-003i 0.065278   0.065278  6.38E-16
9 0 -0.195090322016129-0.98078528040323i 4.83603301812102E-004+2.49389839972149E-003i 0.036266   0.036266  1.34E-15
10 0 -0.382683432365091-0.923879532511286i -9.23330919027176E-005+9.90057931117126E-004i 0.018133   0.018133  9.57E-15
11 0 -0.555570233019603-0.831469612302545i -2.20757113108346E-004+3.56023933068327E-004i 0.008242   0.008242  1.81E-14
12 0 -0.707106781186548-0.707106781186547i -1.81324389075845E-004+7.53710373153621E-005i 0.003434   0.003434  6.25E-14
13 0 -0.831469612302546-0.555570233019601i -9.8543310422437E-005-3.75135142244478E-005i 0.001321   0.001321  1.42E-13
14 0 -0.923879532511287-0.382683432365089i -2.23168063640223E-005-6.25666725447613E-005i 4.7174E-04 4.7174E-04 4.69E-13
15 0 -0.980785280403231-0.195090322016127i 2.8027407378568E-005-4.13795982447673E-005i 1.5725E-04 1.5725E-04 1.29E-12
16 0 -1 4.53999297624849E-005 4.9139E-05 4.9139E-05 4.82E-12
17 0 -0.98078528040323+0.195090322016128i 2.80274073785678E-005+4.13795982447674E-005i 1.4453E-05 1.4453E-05 1.44E-11
18 0 -0.923879532511287+0.38268343236509i -2.23168063640223E-005+6.25666725447613E-005i 4.0146E-06 4.0146E-06 4.86E-11
19 0 -0.831469612302545+0.555570233019602i -9.8543310422437E-005+3.75135142244478E-005i 1.0565E-06 1.0565E-06 1.22E-10
20 0 -0.707106781186547+0.707106781186548i -1.81324389075845E-004-7.53710373153621E-005i 2.6412E-07 2.6412E-07 3.58E-10
21 0 -0.555570233019602+0.831469612302545i -2.20757113108346E-004-3.56023933068327E-004i 6.2886E-08 6.2886E-08 1.9E-10
22 0 -0.382683432365089+0.923879532511287i -9.23330919027079E-005-9.90057931117127E-004i 1.4292E-08 1.4292E-08 -7.4E-09
23 0 -0.195090322016128+0.98078528040323i 4.83603301812102E-004-2.49389839972149E-003i 3.1070E-09 3.1070E-09 -5.8E-08
24 0 1i 1.91130077129597E-003-6.4611809388167E-003i 6.4729E-10 6.4729E-10 -3.9E-07
25 0 0.195090322016129+0.98078528040323i 3.4021680408073E-003-1.75446722567033E-002i 1.2946E-10 1.2946E-10 -1.9E-06
26 0 0.382683432365091+0.923879532511286i -4.23965393755858E-003-4.54604402340856E-002i 0.0000E+00 2.4896E-11
27 0 0.555570233019603+0.831469612302545i -5.71117635819395E-002-9.21064531448694E-002i 0.0000E+00 4.6104E-12
28 0 0.707106781186548+0.707106781186547i -0.213492171576043-8.87422067842451E-002i 0.0000E+00 8.2328E-13
29 0 0.831469612302546+0.555570233019601i -0.402396127528846+0.153184348985287i 0.0000E+00 1.4194E-13
30 0 0.923879532511287+0.382683432365089i -0.229609511356744+0.643725758779707i 0.0000E+00 2.3657E-14
31 0 0.980785280403231+0.195090322016127i 0.50942385519121+0.752112180031037i 0.0000E+00 3.8157E-15



24

Example: FFT

⦁ Continue to use trended empirical severity and 
negative binomial frequency distributions

⦁ n = 4,096 buckets, each about $25,000 wide
⦁ Loss picks

⦁ $5M AAD = $6.4M   ($6.5M using moments)
⦁ $7.5M AAD = $4.9M ($4.9M )
⦁ $10M AAD = $3.7M ($3.7M)

⦁ Graph on following slide compares cumulative 
probability functions: DFT vs. shifted lognormal 
fitted by method of moments
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Parameter Risk, Sensitivity Testing 

⦁ Inflation
⦁ Compare Heckman-Meyer’s mixing parameter
⦁ Measure of unexpected inflation
⦁ Considers leveraged effect of excess layers and average 

time to payout
⦁ Impact of underlying limits becomes an issue

⦁ Frequency Variance Multiplier
⦁ Heckman-Meyers contagion parameter
⦁ Beta negative binomial

⦁ Summary on next slide
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Parameter Risk, Sensitivity Testing

Variance Multiplier (Contaigon Parameter)
AAD VM = 2 VM = 3 VM = 5 VM = 10 VM = 15
5.0M 5.735       5.784          5.975      6.359      6.688      
7.5M 3.637       3.815          4.190      4.853      5.358      

10.0M 2.028       2.309          2.818      3.674      4.303      

Unexpected Inflation Factor
AAD 0.98         0.99            1.00        1.01        1.02        Avg
5.0M 4.653       5.452          6.359      7.377      8.510      6.470       
7.5M 3.400       4.073          4.853      5.751      6.773      4.970       

10.0M 2.473       3.022          3.674      4.440      5.334      3.789       

⦁ Could take probability weighted average over 
different VM and inflation factors
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Parameter Risk, Sensitivity Testing

⦁ Use average over unexpected inflation as proxy 
for mixing parameter
⦁ Differentiates high layers from low layers
⦁ Differentiates long payout from short payout lines

⦁ Use average over different variance multipliers
⦁ Use beta negative binomial to reflect uncertainty in 

estimation
⦁ MGF of beta negative binomial is a hypergeometric 

function not commonly implemented in math programs 
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Example: Discount Factor

⦁ Need to assess when payout will reach AAD
⦁ Assume payout pattern independent of ultimate 

loss amount
⦁ Hard to do otherwise
⦁ Area for future research
⦁ Similar to bond pricing problem

⦁ Using payout pattern, see when losses hit AAD 
for various ultimate losses to treaty

⦁ Compute PV of reinsured payments
⦁ Allow for accelerated payment risk?



30

Summary

⦁ Input assumptions drive differences in results, 
not computational methods

⦁ Moments method works well for moderate and 
large claim counts
⦁ Quick to use
⦁ Easy to implement

⦁ Ideal spreadsheet application
⦁ Accurate answers

⦁ Use three moments and shifted lognormal 
⦁ Does not work for small claim counts because aggregate 

distribution is typically not continuous
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Summary

⦁ DFT method
⦁ Fast, accurate, flexible
⦁ Requires some programming to set up efficiently
⦁ Can be used for complex problems

⦁ Add distributions from many lines
⦁ Model cat programs with unique reinstatement provisions
⦁ Model bivariate distribution of net and gross
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